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Abstract
In this paper three different ways to calculate the temperature dependent
susceptibility of the enhanced paramagnets Pd and Pt are presented and
compared. Special attention is paid to the relative importance of one-particle
and many-particle excitations. One of these methods has never been applied
before to real itinerant systems. It is based upon Onsager’s reaction field model,
which seems to be a feasible and rigorous way to go beyond the mean field
approximation, and it allows one to make quantitative statements. The backbone
of this theory is the calculation of a temperature dependent Hubbard U due to
thermal many-body excitations. In contrast to an earlier calculation we found
a significant temperature dependence of U for Pd. The theoretical results are
in fairly reasonable agreement with the experimental findings for both Pd and
Pt.

1. Introduction

The temperature dependent magnetic susceptibility of enhanced paramagnets still attracts much
interest and is studied extensively [1–7]. In this work three approaches are employed. One
of the first microscopic treatments for the temperature dependence of the susceptibility was
formulated within the framework of the Stoner theory. This theory essentially uses the density
of states (DOS) of the material. The temperature dependence is provided by the derivative
of the Fermi–Dirac distribution function and just one-particle excitations are considered. The
only parameter needed is the Stoner parameter I , representing the interaction of electrons in a
mean field manner.

A completely different approach is the phenomenological Murata–Doniach model.
Nevertheless the underlying assumptions can at least be backed by more rigorous, microscopic
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considerations based upon a one-band Hubbard model [5]. In contrast to Stoner theory this
approach emphasizes collective excitations.

During the course of our work, that is applying the three methods described above, we
obtained quite reasonable results with the Stoner theory for the materials under consideration.
According to common belief the relevant excitations are collective spin fluctuations as put
forward by Moriya et al [8]. As will be shown, it is somewhat difficult to decide which
approach—Stoner or spin fluctuation theory—is the better approximation.

Our new approach, using the Onsager reaction field theory, can give some hints for which
cases the one-particle picture has to be corrected. The equation of the Onsager susceptibility is
of exactly the same form as that of a mean field approximation. The only difference between
the two approximations turns out to be the temperature dependence of the Hubbard parameter,
i.e. U = U(T ). We use a self-consistent method to calculate U(T ) for enhanced paramagnets.
Within the framework of this procedure a clear distinction between the one-particle effects
and the collective effects is possible. One-particle properties simply enter through the DOS
calculated within the local density approximation (LDA), whereas collective effects come
into play through the correction of a mean field Hubbard U for the temperature range under
consideration. The reaction field concept for itinerant electron magnetism [7] was developed
in the same spirit as the self-consistent renormalization theory [8], and to the best of our
knowledge we present the first quantitative results employing a theory like this. Another point
is that we can compare two methods which take care of collective excitations. The first one
is the classical Murata–Doniach (MD) model as already mentioned, the second one is the
Onsager theory as a completely quantum mechanical description. Then both of them will be
contrasted to the Stoner theory.

All calculations were done with realistic band structures and densities of states which
were computed with the very accurate FLAPW method, using the Wien95 and Wien97
codes [9]. This is in contrast to the approaches of many authors who did calculations with
nonrealistic models for the DOS. The investigations showed that the accuracy of the DOS
is a decisive feature. The susceptibility is highly sensitive to even very small changes, for
instance concerning the position of the Fermi energy. The above mentioned approaches will
be described in more detail below. Beginning with the classical model we proceed to the more
rigorous microscopic models.

2. Semi-empirical spin fluctuation theory—the Murata–Doniach approach

This section will give a brief account of the formulae that we apply to find the temperature
dependent susceptibility within the classical MD model. The theory we actually use is an
extension to the original work of Murata and Doniach. Details of this extended Murata–
Doniach model can be found in former publications in this journal [2, 6]. For precursors of
the extended Murata–Doniach model see [1, 10] and [11]. Some of the formulae we use for
the numerical evaluations stem from a microscopic treatment [5]. In this context we mention
the frequencies ωqν of the spin fluctuations (SF), from which we get an expression for an
indispensable cut-off wavevector qc. This cut-off wavevector is parametrized by the Fermi
wavevector kF, which has to be adjusted in order to reproduce the experimental findings as
well as possible.

All the calculations are performed within the framework of a classical model for the
partition function

Z =
∫

D[ �m(�r)] e−βH[ �m(�r)]. (1)
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The solid is considered as a continuous, isotropic medium. We are interested in the spin degrees
of freedom only. A local deviation of the magnetization �m(�r)—a thermal excitation—at a place
with homogeneous static magnetization �M leads to a total magnetization �M(�r) = �M + �m(�r).
A system of equations that can easily be treated numerically reads:

χ−1
SF (〈m2〉) =

√
2/π

〈m2〉3/2

∫ ∞

0
dm

[
B ′(m)

3
+

2B(m)

3m

]
m2e−m2/2〈m2〉, (2)

〈m2〉(T ) = kBT Vc

2π2

∫ qc

0
dq

q2

χ−1
SF (〈m2〉) + χ−1(q) − χ−1(q = 0)

= kBT Vc

2π2

∫ qc

0
dq q2χSF(T, q). (3)

In equation (2) the temperature dependence of χ−1 is implicitly given by 〈m2〉. Note the
appearance of the cut-off wavevector qc, which is indispensable for convergence of the q-
space integral. Equation (2) also requires the knowledge of the wavevector dependent inverse
susceptibility at T = 0. Calculations of this type have already been done by Stenzel and
Winter [12]. We choose a parametrization

χ−1(q) = χ−1(T = 0, q = 0)(1 + σ 2q2), (4)

where σ 2 serves to fit the ab initio calculation by Stenzel and Winter. The value of σ fitting
the experimental curve equals 6.5 a

2π
. By use of the interpolation formula (4), equation (3) can

be integrated leading to an analytical expression for 〈m2〉(T ).

2.1. Self-consistent cut-off wavevector

Equation (3) contains a cut-off wavevector in order to limit the integral. This cut-off is chosen
in a self-consistent fashion for each temperature T . We take the maximum frequency ωqc for
the spin fluctuations from the microscopic treatment [5]. This choice is essentially equal to a
T

1
3 cut-off. The necessity of a temperature dependent T

1
3 cut-off was already mentioned by

Moriya [8].
The third-order equation for qc is numerically solved for each T :

ωqc =
[

Vcµ
2
B

2π2
k2

Fqc

](
χ−1

(SF)(T ) +
Dq2

c

µ2
B

)

= const × kBT . (5)

2.2. Calculational details

The function B(M) in equation (2) is obtained from a fixed spin moment method [13]. What
we are interested in is the external field B for a given magnetization M of the unit cell. To
this end the number of electrons in each of the two spin-split bands is fixed. M and B(M) are
given by the following expressions:

M = µB(n↑ − n↓),

n↑/↓ =
∫ ε

↑/↓
F

−∞
dε ρ↑/↓(ε),

B(M) = ε
↑
F − ε

↓
F

2µB
.

(6)

For each point on the B(M) curve a complete band structure calculation has to be done. We
use a mesh of 51 magnetization values M .
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The basis of our calculations are the equations (2), (3) and

0 = q3
c +

µ2
B

D
χ−1

(SF)(T )qc − 2π2kBT

Vck2
F D

, (7)

which results from rearranging (5).

3. The Stoner theory

One of the different possible ways leading to the formula for the Stoner susceptibility uses
the partial summation of a subset of ring diagrams. In principle the susceptibility is a sort
of density–density correlation function. Of course it is a two-particle correlation function. A
single-ring diagram (bubble) will represent the Pauli susceptibility. Taking the limit �q → 0
and ω → 0, long wavelength and the static approximation are reached.

Starting with a proper definition for the finite temperature correlation function, χ(�q, ω)

can be calculated from the retarded correlation function. Using

χ zz(�q, iω) =
∫ β

0
dτ 〈Tτ mz(�q, τ )mz(−�q, 0)〉,

mz(�q, τ ) = −µB

∑
�k,σ

σc+
�kσ

(τ )c�k+�qσ (0)
(8)

we can go on to calculate the interaction-free susceptibility (denoted by the index 0) by invoking
Wick’s theorem to disentangle the time ordered operator product. We end up with a sum over
a product of two free Green functions:

χ zz
0 (�q, iω) = −µ2

B
1

β

∑
�k,σ,n

G0
σ (�k − �q, iωn − iω)G0

σ (�k, iωn)

= µ2
B

∑
σ


zz
0 (�q, iω, σ)

= 2µ2
B
zz

0 (�q, iω). (9)


zz
0 (�q, iω)—defined as the product over two free propagators and the summation over

all the internal degrees of freedom—can be visualized by a single-bubble diagram. We are
interested in the static limit iω = 0. Summing over the internal Matsubara frequencies iωn

leads to [14]

χ zz
0 (�q, iω = 0) = −2µ2

B

∑
�k

nF(ε�k) − nF(ε�k+�q)
ε�k − ε�k+�q

. (10)

Taking the limit �q → 0 in equation (10) we can change the summation into an integration
over the DOS, and get the formula

χ zz
0 (0, 0) = −2µ2

B

∫
dε n(ε) f ′(ε), (11)

known as the Pauli susceptibility. For T = 0 it simply reduces to 2µ2
Bn(EF). In order to

go beyond the interaction-free theory we include a Hubbard interaction. A general vertex
representing the interaction would be Vklmn , which in the Hubbard case reads

Vklmn = U

N
δk+l,m+nδσkσn δσlσm δσk−σl . (12)

Ensuring four-momentum and spin conservation in the Feynman diagrams we can simply use
U
N ≡ I for the wiggle representing the interaction. It is important to note that only in the case
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of the longitudinal susceptibility can another vertex be attached to the bubble. In the case of
the transverse susceptibility the bubble itself completely defines the susceptibility.

The next step is the summation of bubble diagrams representing 
zz
0 (�q, iω, σ), each of

them connected to the other by an interaction wiggle VHubbard = I . Two consecutive bubbles
must have opposite spin directions. The result for the static, longitudinal susceptibility is the
well known formula [15]

χ zz(�q) = χ zz
0 (�q)

1 − I
2µ2

B
χ zz

0 (�q)
. (13)

For the numerical applications we use equation (11) for χ zz
0 in (13), thus applying the long

wavelength limit. The restrictions to the long wavelength limit and to the static limit are not
real restrictions in the case of enhanced paramagnets. These materials show excitations as
quasiparticles which are called paramagnons. These paramagnons show up for example as
peaks in neutron scattering cross section experiments. The closer we are to q = 0 and ω = 0
the more pronounced the peak becomes [17], defining the appearance of a paramagnon.

4. The Onsager concept

The idea is to go beyond Stoner theory for the longitudinal susceptibility. This will be
achieved at least approximately by adding a correction term λ(T ) to U , thus giving an effective
temperature dependent interaction parameter Ueff(T ).

The idea of a temperature dependent Stoner parameter I (T ) was already proposed in
1979 by Liu et al [16]. To our knowledge these authors were the first to combine the
single-particle density of states with temperature dependent many-body effects. In their
paper a general formula for the temperature dependent susceptibility was derived, which has
exactly the form as the Stoner equation (13) presented above, with the additional feature of
a temperature dependent interaction parameter. No special assumption concerning the form
of the temperature dependent exchange–correlation was necessary. The approach [16] made
use of a finite temperature spin density functional formalism, the essential feature being a free
energy exchange correlation functional Fxc(T ).

The theory evaluated in this paper makes use of a temperature dependent free energy too.
In the following we describe the steps to get a correction to the mean field free energy due
to temperature dependent many-body effects. Finally we succeeded in treating real materials
and making quantitative statements.

The molecular field B̄ felt by a spin is corrected by the Onsager reaction field BR leading
to Beff = B̄ − BR, taking into account that even for a paramagnet there is certainly some
kind of short range correlation. Any spin will influence its own molecular field. For the
Heisenberg model this concept has been known for some time [17]. The generalization to
itinerant magnetism has been proposed only recently [7].

Starting from the concept described, a self-consistent, microscopic method can be
developed to calculate the longitudinal susceptibility for itinerant metals, using the Hubbard U
as the only parameter. A necessary input is the DOS of the material under consideration. The
essential quantity to be calculated is the correction term λ(T ) which gives Ueff(T ) = U −λ(T ).
This is done numerically by calculating the second derivative of a free energy term F(M, T ).
This F(M, T ) is in principle an exact supplement to a mean field free energy. For the actual
calculation of F(M, T ) we make use of a rigid band approximation, which works very well
for small values of the magnetization M , as will be shown.

We start with an expression for the total magnetization M due to an effective magnetic
field Beff , which includes the molecular field as well as the Onsager reaction field. We write
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M = χ0 Beff

= χ0(B + αM − λM). (14)

Using the definition χ−1 = dB
dM for the inverse susceptibility we get

χ−1 = χ−1
0 − α + λ

= χ−1
mf + λ, (15)

which defines the correction to the mean field susceptibility. Integrating (15) with respect to
M (assuming λ to be independent of Mχ−1 = ∂2 F

∂ M2 ) results in

λ = ∂2F

∂M2
, (16)

with the total free energy written as F = F0 + F . Now the task is to get the free energy
correction. This can be done in the framework of the Hubbard model. We use

H(U) = H0 + U
∑

i

ni↑ni↓

= H0 +
U

4

∑
i

(n2
i − m2

i ) (17)

with ni = ni↑ + ni↓ and mi = ni↑ − ni↓. Neglecting the first term in H(U) we are left
with the magnetization dependent part of the Hamiltonian. This in turn can be rewritten with
sz

i = 1
2 (ni↑ − ni↓) as

Hint = −U

2

∑
i

[sz
i , sz

i ]+. (18)

A Fourier transformation yields a Hamiltonian which the fluctuation dissipation theorem can
be applied to. Thus the susceptibility comes into play. We have ( U

N ≡ I )

〈Hint〉 = − I

2

∑
�q

〈[sz(�q), sz(−�q)]+〉,

〈[sz(�q), sz(−�q)]+〉 = 1

π

∫
dω coth

(
ω

2T

)
Im χ zz(�q, ω + iη), (19)

χ zz(�q, ω) = i
∫ ∞

0
dt eiωt 〈[sz(�q, t), sz(−�q, 0)]−〉.

The susceptibility χ zz is defined as a retarded correlation function. With the help of a coupling
constant integral [8] we get the desired F [8]:

F(M, T ) =
∫ I

0
d I

〈
∂Hint

∂ I

〉
M,I

= − 1
2

∫ I

0
d I

∑
�q

〈[sz(�q), sz(−�q)]+〉M,I

= − 1

2π

∑
�q

∫
dω

∫ I

0
d I coth

(
ω

2T

)
Im χ zz

M,I (�q, ω + iη). (20)

The statistical average is taken for certain values of M and I denoted by 〈 〉M,I . So far this
is an exact treatment—in principle. Later on this formula will be the starting point for our
numerical treatment. On setting I = 0 in χ zz

M,I , F reduces to the mean field free energy.
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Clearly the mean field part later on has to be subtracted in order to get the supplement for a
mean field theory. For χ zz we use

χ zz = χ zz
0

1 − Uχ zz
0

, (21)

where we set I
2 = U (additionally µ2

B ≡ 1 will be used henceforth). U is essentially a
parameter which has to be chosen in a meaningful way. With this mean field form for χ zz we
get from equation (15) for the total susceptibility, now extended to depend on M ,

χ zz
M,U (�q, ω) = χ zz

0,M (�q, ω)

1 − (U − λ)χ zz
0,M (�q, ω)

. (22)

The form of equation (22) results from (15) and will be called the Onsager susceptibility.
The generalization of χ zz

0 to χ zz
M,0 is necessary for an evaluation of equation (20). Further

approximations to equation (20) are necessary to get a practicable formula for the free energy.
We make use of a high temperature approximation coth( ω

2T ) ≈ 2T
ω

and change the integration
variable from d I to U

N dx with x ∈ [0, 1] and consequently (U − λ) → x(U − λ). With these
changes we insert (22) into (20) and subtract the interaction-free U = 0 part. The ω integration
is done by a principal value integration using the Kramers–Kronig relations. We get

F(M, T ) = 1

β

1

N

∑
�q

U

U − λ
ln[1 − (U − λ)χ zz

M,0(�q, 0)] + Uχ zz
M,0(�q, 0). (23)

Still a few more approximations are necessary. The �q dependence of χ zz
M,0 is taken into account

in analogy to section 2 as [12]

χ−1
M,0(q) = χ−1

M,0(q = 0)(1 + σ 2q2). (24)

We assume an isotropic system and change the summation to an integration over the first
Brillouin zone. This results in

F(M, T ) = 1

β

Vc

2π2

U

U − λ

∫ qBZ

0
dq q2 ln

[
1 − (U − λ)

χ zz
M,0

(1 + σ 2q2)

]

+ U
1

β

Vc

2π2

∫ qBZ

0
dq q2 χ zz

M,0

(1 + σ 2q2)
. (25)

The �q-space integration over the first Brillouin zone is approximated by an spherical average
with the same volume. We use

qBZ = 3
√

6π2

a3
. (26)

At this point let us say some words concerning the simplifications we made in order to
come to the final result, namely equation (25). The approximations of importance we should
mention here are

• the high temperature approximation;
• the assumption of an isotropic system with a spherical Brillouin zone.

Concerning the high temperature approximation we have two aspects to be aware of. The first
is a mathematical one. The application of the Kramers–Kronig relations obviously depends
on the usage of the high temperature approximation, that is ω  kBT . But as we already
mentioned, the excitation energy of the quasiparticle under consideration tends to zero where
it shows up. Clearly this argument will break down at exactly T = 0, but in this case the
correction to the free energy is equal to zero anyway (note that F(M, T ) ∼ T ). For T > 0
it should be a reasonable approximation.
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The second approximation deals with the assumption of an isotropic system. As we
deal with paramagnets the magnetic moments will fluctuate at finite temperature but their
fluctuations will be around vanishing moments. In this case the assumption of isotropy makes
sense. Using a spherical boundary for the first Brillouin zone is of course a crude approximation
for the shape of the Brillouin zone itself. But in our case it has nearly no influence. The reason
is that a paramagnon is restricted to the region of q = 0, which in turn means that we expect the
dominant contributions to the free energy integral around the vicinity of q = 0. In fact it can
be shown by an expansion (q � 1) of the logarithmic part of the free energy that the resulting
term just compensates the last one. This means that there should be no crucial contributions
to the free energy correction from the border of the Brillouin zone. Additionally we tested it
numerically, and we found our arguments convincingly confirmed.

4.1. Self-consistent determination of λ(T )

Equation (25), along with (16), is the basis for a self-consistent determination of λ(T ). Notice
that λ(T ) enters both equations. We are interested in an evaluation of equations (25) and (16)
in the vicinity of M = 0, because this is the region where paramagnons should contribute. The
only input that enters equation (25) is the longitudinal free susceptibility for a certain value of
magnetization, always at I = 0. In the case of M = 0, I = 0 and T = 0 one gets the Pauli
susceptibility 2n(EF).

Note that we are not restricted to zero temperature when we insert χ zz
M,0 into equation (25).

This is an important point. The overall temperature dependence of equation (25) is not ∼T
resulting from the high temperature approximation. Instead using χ zz

M,0(T ), the temperature
dependence becomes nonlinear.

Our attention is focused on the susceptibility for the general case where M �= 0 and T �= 0.
A rigid band model is used where

χ−1(T ) = 1

4

∑
σ

χ−1
0,σ (T ) − I

2
,

χ0,σ (T ) = −
∫

dε f ′
σ (ε)nσ (ε).

(27)

The spin sum represents the Pauli part. Including the − I
2 term would give the mean field

correction, i.e. the Stoner susceptibility. With equation (27) we have

χ−1
M,I (T = 0) = 1

4

(
1

n(E+
F)

+
1

n(E−
F )

)
− I

2
, (28)

where ± denote spin up and down. Setting I = 0 clearly leads to the interaction-free Pauli
susceptibility (with n(E−

F ) = n(E+
F) for a paramagnet).

To get an idea of the quality of the rigid band approximation we compare a B(M) curve
calculated with the FSM method to a B(M) curve calculated for T = 0 with the formulae

B(M) = E+
F − E−

F

2
− I M

2
,

χ−1
M,I = ∂ B(M)

∂M
.

(29)

It is important to realize that the Fermi energies depend on the magnetization. At least for
small values of M this should be in reasonable agreement with a fully self-consistent B(M)

curve of section 2. The value of I which we have to use in (29) for a meaningful comparison
stems from

I = 2(χ−1
M=0,I=0 − χ−1

M=0,I ), (30)
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evaluated at zero temperature. χ−1
M=0,I has to be calculated from the output of a FSM calculation

of section 2 in combination with (29), in the neighbourhood of small M , thus actually from
the differential quotient. This results in quite reasonable values for I . It is remarkable that the
two different B(M) curves agree even for higher values of M , as can be seen in figure 1.

For T �= 0 it is necessary to calculate the chemical potential µσ(Ti ) for the Fermi
distribution function f . Practically this is done by solving the equations∫

dε f+(ε)n(ε) − N + M

2
= 0,∫

dε f−(ε)n(ε) − N − M

2
= 0.

(31)

N defines the total number of valence electrons for the material. These equations have to be
solved for each temperature T = Ti and the chemical potential µσ (Ti) is inserted in (27).

We evaluate equation (25) and its second derivative λ(T ) (16) with the help of the
temperature dependent Pauli susceptibility at small values of M . For the second derivative
near M = 0 the numerics is done with three consecutive values of a small M .

4.2. The self-consistency cycle

First of all we have to choose a value for U . There are different methods for getting the
interaction parameter. One member of our group calculated the Stoner I for palladium and
platinum [18] with the method of Janak [19] and the method of Gunnarson [20]. The results
for palladium are 5.16 × 10−2 and 5.33 × 10−2 Ryd, respectively. The value of the parameter
I used in the present paper is very close to the last one. Another possibility for getting U ≡ I

2
would be to use equation (30). Using either one of these methods makes a fitting of the
interaction parameter superfluous. Nevertheless we feel free to use the interaction parameter
as a fit parameter, because the values of ab initio methods obviously differ too much.

Now for three values of M (near M = 0) a self-consistency cycle runs as follows: for
each Ti we calculate the free energy (25) and then take the second derivative with respect to
M in order to get λ(T ). Then λ(T ) is inserted back into the expression for the free energy.
This procedure is repeated until convergence is reached for each T .

We end up with λ(T ) for the temperature range under consideration. Finally the
temperature dependent Onsager susceptibility is given by

χons(T ) = χp(T )

1 − U(T )χp(T )
(32)

where U(T ) = U − λ(T ) and χp means the Pauli susceptibility.

5. Results

The experimental values were taken from [21, 22] and [23]. All results presented in this section
are based on FLAPW calculations. There are different possibilities for doing the band structure
calculations. Many authors use the experimental lattice constant for their calculations. In our
opinion this is inconsistent with the fact that band structures are (usually) calculated at T = 0.
So we decided to use the equilibrium lattice constants as derived from the LAPW program
(a = 7.264 au for Pd, a = 7.365 for Pt). 1059 k-points were used in the irreducible part of
the Brillouin zone. All our computations use the scalar relativistic option. Figures 2–9 show
the results for Pd, figures 10–12 those for Pt.

Figure 1 gives an impression of the validity of the rigid band model that we use for the
Onsager theory. We compare a self-consistent fixed spin moment calculation with a much
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Figure 1. B(M) from a rigid band model compared to a fixed spin moment calculation for Pd.

Figure 2. χ(T ) from classical spin fluctuation theory. Two different cut-offs are used. Results for
Pd.

simpler rigid band shift. The agreement is very convincing up to even relatively large values
of magnetization.

Figure 2 shows the results from the classical spin fluctuation theory of section 2. The
overall agreement of the SF curve with the characteristics of the experimental curve is
satisfying. Nevertheless there is a strong dependence of the results on the choice of the
cut-off vector for the q-space integration. This makes it quite difficult to compare the theory
to the experiment. One common way to choose the cut-off is to force the theoretical curve
to match the experimental one at high temperatures because the theory makes use of the high
temperature approximation.
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Figure 3. The correction factor λ(T ) for a calculated U value for Pd.

Figure 3 shows the temperature dependence of the correction factor λ with a value for U
calculated with equation (30). Thus there is no fit parameter at all. It has to be emphasized
that the temperature variation of λ is very delicate. Liu et al [16] could not find a variation of
I (T ) which was strong enough to reproduce the experimental curve, claiming that a variation
of ≈2% (in a temperature range from 0 to 300 K) seems to be necessary (Pd). That is exactly
in accordance with what we found, namely a variation of λ(T ) in that temperature range of
≈1.5% relative to the values of the Stoner factor for T = 0. It depends somewhat on the value
of U that one uses (compare figures 3 and 4).

Figures 5 and 6 show the results obtained with the Stoner and Onsager theory, respectively.
The Stoner theory obviously gives quite reasonable results. This seems to stress the importance
of single-particle effects, which enter the band structure DOS. The experimental characteristics
are reproduced quite well, whereas the temperature of the maximum is somewhat too high
(≈115 K). Inclusion of the temperature dependence of U gives a lower temperature of the
maximum (20 K off experiment), but the absolute value of χ is exaggerated if the calculated
interaction parameter is used. By choosing a smaller U we can remedy this disagreement, thus
treating U as a fit parameter. The value of U drastically influences the absolute values of χ ,
but the position of the maximum is apparently unaffected.

The results are highly sensitive to the structure of the density of states near EF (see figure 9).
In order to show this, we shifted EF by changing the number of electrons in our calculations.
Using 9.99 instead of 10 electrons we get the results shown in figures 7 and 8.

The results for Pt are similar to those for Pd ‘grosso modo’. Yet there are some striking
differences in detail. As can be seen in figure 11 the minimum value for the correction term
λ is roughly one order of magnitude smaller compared to that for Pd. As a consequence the
influence of λ on the Onsager susceptibility is much less pronounced. Another important
feature of Pt is the density of states near EF (see figure 10). The number of states there is
much smaller compared to Pd, whereas the value for U (25.2 mRyd for Pt) is about the same.
This means a much smaller enhancement factor for Pt, thus making Pt much less sensitive.
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Figure 4. The correction factor λ(T ) for a smaller value
of U for Pd.

Figure 5. χ(T ) based on a calculated U for Pd.

Figure 6. χ(T ) based on a fitted U for Pd. Figure 7. χ(T ) with a shifted Fermi energy for Pd.

Figure 12 shows the results for Pt. As expected, the correction due to a temperature dependent
U is apparently non-existent. In this case the Stoner theory is a very good description.
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Figure 8. χ(T ) based on a shifted Fermi energy for Pd. Figure 9. The density of states for Pd.

6. Discussion and conclusions

In this paper the influence of thermal many-body excitations (spin fluctuations) on the
temperature dependence of the susceptibility was investigated. We have applied three different
models to compute the temperature dependent susceptibility of Pd and Pt. The classical
spin fluctuation theory is basically capable of reproducing the significant maximum in the
temperature dependence of the susceptibility. Nevertheless the results are not quite satisfactory,
because the dependence of the results on the cut-off parameter seems to be a severe problem,
which limits the predictive power of this theory considerably.

The Stoner theory is a simple and rigorous theory. The only input needed is the density
of states. Calculating ab initio values for I there are no other parameters at all. The results
show that the Stoner theory gives good results for both Pd and Pt.

Using the Onsager concept we performed realistic calculations of the temperature
dependent interaction parameter U(T ). We found out that U changes only little (≈0.75%)
in the temperature range of interest. These changes can be ascribed to spin fluctuations.
Though very small, they have a significant influence on the temperature behaviour for Pd. The
Onsager concept turns out to be a theory which makes it easy to distinguish between one-
particle excitations and many-body excitations. This kind of distinction is somewhat difficult
within the framework of the classical spin fluctuation theory. Altogether we could show that
the temperature dependence of the susceptibility is a very intricate interplay of one-particle
and many-body effects. The many-body excitations are strongly influenced by single-particle
effects, as expressed by equation (23).

In our opinion it is somewhat difficult to decide whether there is a real need to invoke
many-body excitations to explain the typical temperature dependence of the susceptibility.
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Figure 10. The density of states for Pt. Figure 11. λ(T ) for Pt.

Figure 12. χ(T ) for Pt.

Nevertheless our results for Pd give us some important hints concerning the influence of spin
fluctuations for Pd and Pt. That is:



Calculation of the temperature dependent susceptibility of enhanced paramagnets 933

• Spin fluctuations shift the position of the maximum to lower temperatures. The Onsager
maximum appears at about 65 K compared to about 115 K with the Stoner theory. The
experimental maximum shows up at 85 K.

• The influence of spin fluctuations is much less pronounced for Pt than for Pd; this can be
seen from the absolute values for λ.

• Within the Onsager theory we can understand our surprisingly good agreement of the
Stoner theory with the experimental findings. This is obviously because of the small
absolute change of the interaction strength U as a function of the spin–spin correlation
for T �= 0.

Also we made real progress by dealing with spin fluctuations within the framework of the
Onsager theory compared to the treatment with the classical Murata–Doniach model. At this
point we should mention:

• The Onsager theory is a completely quantum mechanical description.
• There is no need to invoke a cut-off wavevector which shifts the maximum temperature

as well as changing the shape of the theoretical curve. Within the Onsager theory the
maximum appears as a stable effect.

• Compared to the Murata–Doniach model we have a much better agreement with the
experimental curve.

• Last but not least, the Onsager theory provides a feasible way to do calculations for realistic
materials. The computational effort is basically not much different to that of band structure
calculations.

As we have shown, the sensitivity of the calculations to tiny changes in e.g. EF is very
high.

So it might be possible that just more accurate band structure calculations will lead to
even better results in the framework of the Stoner theory. The explanation of the temperature
behaviour of the susceptibility of Pd without spin fluctuations was already proposed by Irkhin
et al [24].
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